
Case Study of Customer Input For a Successful Product

Lynn Miller
Director of User Interface Development

Alias, Toronto, Canada
lmiller@alias.com

Abstract

Both agile development and User Centered Design
stress collaboration between customers and product
teams, but getting these methodologies to work well
together is not easy. This paper describes one
company’s efforts to merge these processes by creating
interconnected parallel design and development
tracks. The benefits of this approach are demonstrated
by showing how, when and why customer input was
incorporated during the release of a successful
software product.

1. Introduction

Studies in Human Computer Interaction (HCI),
User Centered Design (UCD) [1] and User Experience
Design (UED) [2] have found that accurate and
frequent customer input is essential for a successful
software product. Knowing who your customers are,
what their environment is like, and what their needs
are gives you the information required to plan and
design a product. But to be successful, you cannot stop
there. It is necessary to frequently contact your
customers while making your plans and designs a
reality.

At Alias, the Usability Engineering team has been
gathering customer input for our products for many
years. When product development started looking into
adopting agile development, Usability Engineering
was pleased to see that customer collaboration was part
of the Agile Manifesto [3]. We could see that the
merging of usability and agile would be mutually
beneficial. Usability could incorporate our existing
skills to better effect, and development could save time
and effort while producing a better end product.

We found that our methods for collecting customer
data did not need to change much, but the frequency
and timing of collection changed considerably.

2. Background

Alias is the world’s leading provider of 3D software
for design, game creation, and graphical special effects
for film and television. Our flagship products are
highly specialized software like AutoStudio, which is
used to design cars, and Maya, which is an animation
package used in film and games. Alias software has
been used in almost every film nominated by the
Academy of Motion Picture Arts and Sciences in the
categories of Best Visual Effects and Best Animated
Feature Films, since their inception.

2.1 The usability team

Alias has a Usability Engineering team that is part

of the product development group. The team consists
of four interaction designers, two graphic designers,
one intern developer, and one manager (me) who also
works as an interaction designer. We have been
gathering customer input at Alias for over 12 years.

The Usability Engineering team has a non-standard
organization compared to other companies that we
have talked to. There are two aspects that specifically
affect how we interact with the development team.

The first relates to project assignment. Many
companies assign their usability staff to all products
that are being developed. We have chosen a different
route. At Alias, each interaction designer is assigned to
a single product at a time. Interaction designers start on
a product at the market validation stage and then work
as full-time members of the product team throughout
the entire development process.

 It also seems common for companies to assign the
various UCD duties to separate groups, one group
doing the market research and gathering user
requirements, another doing interface design, and a
third doing usability testing. Our interaction designers
are responsible for all of these. We find that having the

same person work on all aspects of UCD over the life
of a product means that there is no loss of information
when data is transferred from one group to another.

2.2 The product

Three years ago Alias started developing a new

product, called Alias® SketchBook™ Pro.

Figure 1. Alias SketchBook Pro

This product is used for 2D sketching and was

designed to run on a Tablet PC, or a workstation with a
Wacom® tablet. It was initially released during the
Tablet PC launch in 2002 and was one of the first
products that was designed specifically for the Tablet
PC (that did not come with the operating system).

As shown in Figure 1, most of the window is a
white canvas that the user sketches on. The arc in the
corner is where the user accesses the functionality of
the product. A press and hold with a stylus on the
icons along the arc displays Marking Menus [4], as
depicted in Figure 2.

Figure 2. Brush selection Marking Menu™

2.3 Agile at Alias

At the same time that SketchBook Pro was being
envisioned, Alias was learning about agile
development. We brought in Jim Highsmith to teach
agile principles and methodologies. The product
development group chose to adopt the Adaptive
Software Development [5] process along with Scrum
meetings [6] and many elements of Extreme
Programming [7]. The SketchBook Pro team decided
to develop their first release using agile development
practices. The usability team members took this as an
opportunity to modify our customer input process so it
fit better with this new development model. Both the
usability and development changes were highly
successful, and subsequent releases of SketchBook Pro
have been developed the same way.

Although agile approaches have been used from the
start on SketchBook Pro, this paper will focus on the
V2.0 release, which had a much smaller team than
previous releases. The V2.0 team consisted of two
developers, a technical team leader, a technical writer,
a product manager, a quality assurance tester, two
graphic designers (not full time), two interaction
designers and a prototype developer (intern). I worked
on the product as an interaction designer. The duration
of the release effort was one year.

3. Avoiding customer input at all costs

Customer input is arguably unavoidable. Software
teams that build products without talking to customers
do not successfully avoid input. They just receive the
input after the release of the product – in the form of
bad reviews, lost sales, broken contracts and rewrites.
These things cost companies (and governments) their
reputation, revenue, and development time. A recent,
and very expensive, example is the fiasco over the
failed UkeU e-university project [8]. The House of
Commons Select Committee cited that not doing
market research and being technology-driven instead
of user-driven were the main reasons for the failure
[9].

Since customer input cannot be avoided, it has been
our strategy to try to manage it. Managing customer
input means making sure that we are getting the right
type of input, at the right time, and from the right
people. We have found that all three of these concepts
are of equal importance for successful customer input
on a product.

4. Who are these people?

Software is built for a particular audience, ranging
from the more general (e.g., internet users) to the more
specific (e.g., heart surgeons). Numerous HCI studies
show that an indispensable aspect of getting relevant
customer input is identifying your customers so that
you know who (and who not) to talk to.

For SketchBook Pro, we identified our target
audience as "creative professionals who do freehand
sketching, and need high quality results." A few
examples of potential SketchBook Pro users would be
character designers (for games and film), industrial
designers and fine artists.

4.1 But not these people…

The identified target audience needs to be as
specific as possible. A typical mistake is specifying too
broad an audience (e.g., Everyone!), which means
there are no boundaries to help make user interface and
product decisions.

By being specific (i.e., not just saying "artists" or
"anyone who draws") we knew that we would get
applicable data from the users mentioned previously
but not from photo manipulators or CAD package
users, even if they bought our software. This is
because the latter customers do not sketch so they do
not really want our product. Their input could change
our software into a totally different product - one that
they do want, but not the one that we want to create.

As an example, users of Adobe® Illustrator® are
artists, so you would think that they match our target
audience, but many of them cannot sketch. This is
because Illustrator allows people to make good-
looking images without freehand drawing skills.
Illustrator users request Illustrator-like assisted
drawing features for SketchBook Pro. Having
identified our target audience specifically (not just
"artists" but those who sketch) we are able to recognize
that our product is not aimed at all Illustrator users.
This means that we can concentrate on implementing
features that truly affect our target audience. Although
important for all products, this was particularly
relevant for SketchBook Pro V2.0 since we had such a
small development team, and one of our guiding
principles for the product was elegant simplicity. We
defined this to mean that features in the product are
used by most users, most of the time. Features are not
added just because they can be.

We have found that investing time to make sure that
the entire team understands, and agrees on, who the
target audience is, makes collecting and using

customer input easier throughout the entire
development process. It allowed us to make decisions
on feature sets and design trajectories, and stay true to
our vision.

5. Can't we just talk?

Effectively gathering customer input requires the
use of an arsenal of different elicitation methods, most
of which require training to collect untainted data.

The types of methods used, how they were
conducted, and the skills required to facilitate them did
not need to change for customer collaboration on an
agile development project – only the timing of these
activities changed. This meant that our interaction
designers could capitalize on their years of experience.

In the next section I will briefly discuss some of the
most commonly used customer input methods, and
state the pros and cons for each since the methods are
not interchangeable. I have included some useful
books in the Resources section at the end of the paper
to provide more information on these.

5.1 Contextual inquiry

Contextual inquiry is a structured field research
technique used for ethnographic study. It is
investigative in nature and focuses on the context of
the user's work and environment, rather than (for
example) on specific features of a product.

Contextual inquiry is used to discover what the
user's work environment is like, how users do their
work now, what their work goals are, what problems
they are trying to solve, what steps and data are needed
to solve their problems, what data is produced, and
how their work is evaluated.

Contextual inquiry cannot determine how well a
product will work in an environment or how easy to
use or easy to learn a product will be.

5.2 Interviews

Interviews are structured one-on-one question and
answer sessions. They are investigative in nature so the
intent is to gain understanding in areas that are unclear.

The majority of interview questions are "open" and
conversational, instead of "closed" and quantitative.
For example, an interviewer might ask, "What does
our competitor do better than we do?" to initiate a
discussion, but not "Please rank on a scale of 1 to 5
which of these competitor's features are better than
ours."

Interviews are good for learning the customer's pet
peeves, the problems they are running into, their likes
and dislikes about the software, and what they want to
see in future versions.

Interviews cannot determine if software is easy to
learn, or easy to use. Interviews will not help identify
new market opportunities.

5.3 Usability tests

Usability tests are used to evaluate a product design
by watching the intended users of the product try it (or
a prototype of it) for its proposed use, and seeing what
problems are found.

Usability tests are good for discovering issues with
learning, discoverability, error rates, and speed of use.
They also uncover issues with incorrect or omitted
feedback. Usability tests can uncover missing features
that are needed to complete a workflow.

Usability tests cannot discover whether a product
will fit into the users' work environment since they are
normally not conducted at the users' work place, on
their hardware and using their files. They cannot verify
that a product is solving the right problems for specific
users, or if people will actually buy it.

5.4 Focus groups

A focus group is a moderated, exploratory
discussion with a prepared focus. The participants are
users or potential users.

Focus groups are good for getting user's opinions,
goals, priorities, and seeing how these compare to
others in the group.

Focus groups cannot determine if users would
actually use proposed new software, or what features
should be put into a release. They also cannot be used
to determine whether software is learnable or usable.

5.5 Surveys

Surveys are strict sets of questions that are
delivered to a large number of people in order to gather
quantitative data.

Surveys are good for getting simple factual data,
priorities, and confirmation of information that was
gathered in an exploratory session.

Surveys cannot give an understanding of the “why”
behind the facts that are gathered since there is no
ability to have a discussion with the participants.
Surveys also cannot tell if people will buy a product.

5.6 Beta tests

Beta tests are when almost-complete software is
sent to customers, and they are asked to report
problems.

Beta tests are good at finding bugs. They are also
good at determining if the software actually solves the
customer's problems and if it works in their specific
environment.

Beta tests cannot convey if the software is easy to
learn or easy to use since beta customers will not
typically give this feedback. If the software is hard to
learn or use, Beta customers will blame themselves and
will not report the problem because they do not want to
appear stupid.

5.7 Demos

A demo is a canned demonstration of new software
(or new features) shown to your customers to get their
opinions.

Demos are good for learning what users think about
a proposed feature, if a feature would make them more
likely to buy, and if they think you are going in the
right direction to solve their problems (although they
cannot tell you if you are actually going in the right
direction).

Demos cannot determine if a feature will work in a
real production environment, if it is easy to use and
learn, or how much people will like the feature after
they start using it for real.

6. Timing is everything

For the Usability Engineering team, the big change
brought on by agile development was when and how
often the interaction designers collected customer
input. We had been gathering customer input for many
years, so identifying our customers and knowing which
methods to use was not new to us, but the timing and
incorporation of that data into our existing
development method had never been ideal.

Previous product development used a mostly-
waterfall method of development. We were supposed
to do the typical waterfall stages of requirement
gathering and analysis, design, implementation,
testing, and deployment. This never really happened.
As a company that has to respond quickly to changing
market forces and has to maximize the output from the
development group, we often ended up going from
requirement gathering straight to implementation.
Basically, the requirement gathering would be pushed
as late as possible to get up-to-the-moment data, so by

the time the "plan" was ready the developers were idle
and needed to start something. This worked for getting
the best possible initial plan, but meant that
immediately after the plan was released the developers
would begin coding with no time for proper customer
input or user interface designs. Features would be
implemented based on guessing what the user would
do or would want, with no verification with actual
users until after implementation.

Worse still, on some products most large features
would start being coded simultaneously since each
feature was assigned to a separate developer. This
made it impossible for the interaction designers
assigned to the product to simultaneously investigate
and design that many features at once.

Figure 3. Non-agile development

As interaction designers in this environment, we

had various strategies to circumvent this less-than-
optimal process and bring customer input and real
interface designs into the mix. One technique would be
to investigate and design features ahead of time so they
would be "ready" when implementation started. Since
many of the features would not make it onto the
official plan, this resulted in wasted work.

Adopting agile development gave us the
opportunity to eliminate this waste. Since one of the
Agile Principles is early and continuous delivery of
valuable software [10], the development effort had to
change from having many developers working
simultaneously on separate features, to having the
whole team work together to get a smaller set of
features implemented in a shorter time so that they
could be shown to customers.

This made interface design and customer input an
integral part of the development process, as it should
be with agile. The SketchBook Pro team organized
implementation and design as two equal and highly
interrelated tracks, as shown in Figure 4.

This double-track method meant that we got richer
customer input and more timely feedback, which
resulted in fewer scheduling surprises and a much
better piece of software.

Figure 4. Agile development

7. Customer input in cycle 0

Cycle 0 is the "speculate" phase of the Adaptive
Software Development [5] method that we were using.
During this cycle the interaction designers gathered
customer input to determine the capabilities that would
be added and the priority of each.

Potential customers were heavily downloading
SketchBook Pro V1.0. The software had a trial period
with full functionality for 15 non-consecutive days.
This gave users the opportunity to evaluate the
software before purchasing. SketchBook Pro was
getting excellent product reviews and positive
responses at tradeshows, through email, and in our
discussion forums. However, only a small number of
the people who downloaded and tried the software
were actually purchasing the product. To address this,
we set the goal for the V2.0 release to be "remove the
top obstacles that prevent people who download the
product from purchasing it." This goal was established
jointly by the product manager, development manager
and myself. In order to meet this goal we needed user
input to understand what was wrong with the V1.0
release.

7.1 Identifying the critical capabilities

Our first source of input was the usability test
information from the last release. Usability tests
provide both information that can be used immediately
to redefine the feature that we are working on, and
information that does not necessarily fit with the goals
of the current release but is still worthwhile. It is the
latter type that we drew upon during cycle 0.

For example, usability testing had shown that users
were having a lot of trouble trying to resize brushes.
Fixing this problem did not fit in with the goal of the
previous release, but the problem was large enough
that it was likely affecting people's purchasing
decisions.

Along with the usability test data, we gathered
customer input from our discussion forums, and visited

customers to conduct interviews and collect contextual
inquiry data.

Amalgamating all of this information gave us an
initial list of about 20 things that most likely were
causing people not to purchase (contrasted to the total
number of feature requests received at this point,
which was around 100).

Two developers could not do all 20 features in a
single release so we needed to prioritize them. The
customer input at this point was investigative and did
not have enough data points for us to assign priorities.
To get an accurate ranking of the data we needed to
contact a larger group of people.

7.2 Prioritizing

The interaction designers, working with the product
manager, created and distributed a survey to the people
who had downloaded our software but had not
purchased it. The survey elicited customer input on
the 20 items that we had identified to give us their
relative priorities. We also gathered information on
what they thought of the product. Reassuringly, even
those people who had not purchased still said they
loved the product. They just did not think it had all of
the features that it needed. This further validated our
release goal.

The survey ranking data allowed us to cut the list of
20 items down to 5 that the V2.0 release absolutely
had to address to get people to purchase, plus a
priority-ranked list of the rest of the features. This
information was brought into the initial iteration
planning meeting, which had representatives from
product management (focusing on company
objectives), development (focusing on feasibility and
timeframes), and usability (representing the users). All
decisions were made by a combination of this group.

In this initial iteration planning meeting the iteration
objectives were decided, and the product team roughed
out which features would go into which iteration
(cycles were each about two weeks long). We used the
priority data to make sure that we worked on the most
important items first, so if something had to drop, it
would be one of the less important features.

8. Cycle 1:

8.1 Getting the time to design

The first cycle was a little different than subsequent
cycles because the user interface designers had just
been given the feature list and had not had any design
time, and yet the development team needed to start

coding. This was similar to the problems we had faced
before with our old development method. With agile,
we were able to solve this problem by filling cycle 1
with features that had a high development cost and a
low design cost. For example, one of our new (and
crucial) features was the ability to save files in the
Adobe® Photoshop® format. This was quite tricky for
the developers, but the design was "add a Photoshop
line to the Save As dialog". Having a few of these
gave the interface designers some breathing room.

8.2 Finding the right users

For customer input on SketchBook Pro V2.0 we

worked with three different types of people.
We first sought out Alias employees that matched

our target audience. Alias hires users of our software
to work as product specialists and application
engineers and also to work in quality assurance and
support. We were able to find character designers,
industrial designers, and other sketchers on staff.
These were always the first people that we would talk
to, or test with, since they were readily available.
However, it was not sufficient just to contact internal
people since they knew too much about the company
and our technology so did not completely match the
people who would be buying our product.

Our second group of people was external target
customers who had not seen the software before. One
method we used to recruit people in this group was to
post physical notices at key schools, and virtual notices
on professional discussion forums, inviting people to
help us. We would then screen the respondents for
those that matched the characteristics that we were
looking for. (For example, we would have them send
us some of their sketches to ensure they actually could
draw freehand.) This group tended to have more
students than professionals so we brought them in for
usability tests did not use them for contextual inquiry
investigations.

The third group was the hardest to recruit, but the
most important. They were professionals that agreed to
work with us over the course of the release as Design
Partners. We would visit them at their work places to
gather contextual data and have them participate in a
series of usability tests.

To find this last group of people we used the survey
data (described in section 7.2). We had asked the
respondents if we could contact them for more
information and had them provide an email address.
For those that said yes, we had to find the ones that
were within driving distance of Toronto as we planned
to visit them often. Since we had not required the

survey respondents to identify themselves or their
location, I traced their IP addresses and pulled the ones
that were originating in Ontario and Quebec. Then the
other interaction designer on the product emailed them
explaining what we wanted to do. She then had to
qualify the interested respondents to make sure that
they matched our target audience and that they had the
time to work with us. Although time consuming, this
gave us a small group who provided us with vital data.

8.3 Customer verification of design

In cycle 1 the interface designers worked on
features that would be implemented in cycle 2. We
would first design the interface and then build a
testable prototype. Sometimes these were low-fidelity
(paper) prototypes, and sometimes the usability intern
would create high-fidelity (coded) prototypes. The
latter was used when the design verification relied on
real-time interaction. For example, we used paper
prototypes for the custom brush dialog, and coded
prototypes for interactive brush resizing.

Problems with the designs found during the
usability tests were corrected, fixed in the prototypes,
and retested. (For example, issues with discoverability,
ease of learning, ease of use, and feature
completeness.) This cycle continued until the designs
had achieved their design goals. We used all three
types of customers for the usability tests – first testing
and iterating on the design with internal users, then the
student group, and finally with our Design Partners.

Because of this customer input at the prototype
stage, the design was already known to be correct and
complete when development began in the next cycle.

This gave us several advantages. First, we knew the
design incorporated all of the necessary functionality
that the user needed. This meant that we did not get
surprised later on by a crucial missing piece that had to
be added to the schedule. Secondly, we knew that the
design had achieved its design goals and users could
do what we wanted them to be able to do. This
allowed us to be able to safely say "no" to incremental
feature requests because we understood what was meat
and what was gravy.

8.4 Understanding customer needs

Usability test results for design validation were not
the only type of customer input during this cycle. The
designers also had to gather the information that they
would need for the features that would be designed in
cycle 2 and implemented in cycle 3. This input came
from contextual inquiries at our Design Partner sites.

It is important to note that although this group was
called Design Partners, they did not participate in the
actual designing of the interface. They provided the
upfront information that the interaction designers
needed to develop a design, and they verified that the
design was working from the prototypes, but they did
not actively take part in designing the interface.
Having developers, business representatives and users
work together to design a solution is covered in a
method called Participatory Design. The interaction
designers at Alias do not use this method because we
find it does not work well with our types of users
(creative), interfaces (innovative) and products
(shrink-wrapped).

Of course, even if we weren't looking for designs,
often our Design Partners would suggest interface
solutions to us. The problem was that these
suggestions were often based on standard practices
from other applications and would not work with
SketchBook Pro, which was designed for use with just
a stylus (no keyboard, no mouse buttons) and so had to
have an innovative interface. For example, customers
often suggested adding hotkey support to fix ease-of-
access problems, but hotkeys do not work without a
keyboard.

Because of this, it was important for us to focus on
trying to understand how the customers worked and
what their problems were instead of listening to the
specific solutions that they proposed. By making sure
that we thoroughly understood the problem, we could
devise a solution that fit our application better.

8.5 Parallel tracks in cycle 1

The parallel track organization for cycle 1 is shown
in Figure 5. The developers worked on features with
high development costs and little user interface, while
the interaction designers investigated, created and
verified designs for the next cycles.

Figure 5. Cycle 1 – two tracks

Developers and interaction designers attended the
scrum meeting each day to keep everyone apprised of
what was happening in the two groups. When required,
after the scrum, the interaction designers would present
design concepts to the development group for feedback
and feasibility. We would also present usability test
results so everyone would know how well the designs
were working and could suggest solutions to interface
problems.

There were three large wins for the interaction
designers with this parallel-track process over our old
process. The first was that since we were always
designing for the next iteration (or two at times) we did
not waste time creating designs that were not used.
The second was that we could do both usability testing
of features and contextual inquiry for design on the
same customer trips, which again saved us time. The
final benefit is that we were always getting timely
feedback, so if there was a sudden change in the
market (like new competing software being released –
which happened) we received input on it right away
and could act accordingly.

There were two big wins for the developers as well.
The first was they were able to maximize coding time
since they didn't have to wait for us to complete paper
prototypes and usability tests. This was very important
for SketchBook Pro V2.0 because we only had two
developers. The second was that they didn't waste their
efforts coding the various design concepts for the
innovative interface pieces. During the research stage
for these designs it was common to create multiple
diverse prototypes while trying out ideas, and all but
one of these would be thrown out.

9. Customer input thereafter

Customer input for cycle 2 and the rest of the cycles
were similar to cycle 1 in that the interaction designers
would be conducting usability tests to get verification
of our prototype designs, and contextual inquiries to
get an understanding of the problems being solved by
the features that we would be working on next.

Additionally, after cycle 1 we had to get customer
acceptance of the features that were implemented in
the previous cycle. The prototype usability test data
proved that the original designs were discoverable,
easy to learn, easy to use and complete. However, most
designs had to be tweaked slightly because of technical
implementation problems, and the usability tests did
not show us how the features would interact with one
another. (The prototypes were often of single features

in isolation.) We needed to do another round of
usability tests, but this time on the actual production
software.

Unlike traditional after-the-fact usability tests,
problems found in these tests tended to be small and
were simply logged as bugs to be fixed in the next
cycle.

Figure 6. Cycle 2

Figure 6 shows the two tracks for cycles 1 and 2
and the deliverables passed between the groups.

Designs were not just "thrown over the wall" to the
developers. Through the daily scrums and interface
presentations, the developers had followed the design's
progression throughout the last cycle. Once the design
was complete there was also a meeting with the
developers and interaction designers where the design
would be broken up into feature cards and feature
points would be assigned. And finally, the interaction
designers would work daily with the developers once
implementation started to answer questions and solve
problems that arose from issues with implementation.

9.1 Customer input after releasing Beta cuts

The last piece of customer input that was needed

was whether the features would work in the user's
production environment. All of our input so far was on
our own hardware with our own test files.

To gather this information, the product team set up
a beta testing group of 55 people. After key cycles we
distributed software to this group so they could try real
work with it. We set up a discussion forum for their
feedback.

Customer input from beta tests is one of the most
misunderstood types there is, so it was important that
we knew how to "read" the input that we received.

The biggest problem is that beta testers try to design
user interfaces. When a beta tester proposed a design,
we would look for the reasons behind what they were
saying so we could understand what they were really

asking for. Very often they were trying to solve a
problem that we already had a design for. Even if we
did not have a design yet, and the request was valid for
the product and the release, we would normally still
design our own solution to it. As interface designers
we have a lot of experience with what makes a good
design and what fits in with our design goals for the
product – the beta testers do not normally have this
experience.

For example, we constantly had customers asking
us to put functionality on the barrel-button (that is on
the side of the stylus). Examples include brush resize,
zooming, hiding windows, and hotkey input, to name a
few. We have watched countless people using a stylus
to draw and we knew that it was a bad idea. When
people are drawing they hold the stylus like a pen and
move it between their fingers, which results in
accidental barrel button pushes. If we took the design
solution literally from our customers, we would have
spent precious time implementing a customizable way
of adding functionality to the barrel button, only to
have most of our customers turn it off and then ask for
a different solution. As it was, we came up with an
innovative design solution to the brush resize problem
(which was the most requested barrel button
functionality) that our customers loved.

Overall, the beta testers gave us a lot of valuable
feedback. The biggest benefits were the bugs and
performance issues that they found. Beta testers use
larger canvases and more layers than we normally can
test with. They also have different hardware. They
found bugs that would normally have been found only
after shipping and helped us track down and verify
solutions.

The beta testers also gave us feedback on whether
the features we added were desired (they were happy
to see them) and whether the features we were about to
add were the correct ones (what they asked for next
was already in the plan). This validated the customer
input that we gathered in cycle 0.

10. Reflection

The Usability Engineering team at Alias has been

gathering customer input for many years, but never as
effectively as when we work with an agile
development team.

For SketchBook Pro, we were able to maximize the
quantity and impact of customer input by having the
interaction designers work in a parallel and highly
connected track alongside of the developers. Daily
interaction between the developers and interaction
designers was essential to the success of this process.

Figure 7. Dual tracks

The two-track organization shown in Figure 7 is

what we aimed for, although in reality it was a little
more complex. Some designs needed longer than a
single cycle to complete. For example, one particularly
troublesome feature took us over 5 cycles before the
design passed all of its goals. The general rule still
held true even for those cases where we had to design
more than one cycle in advance – the design is timed
so that it is ready just as the cycle that it is needed in
starts.

Not all companies organize their usability resources
in ways that allow this structure, but if they did they
would likely find their usability and development
teams could work together more closely, save design
and development time and effort, and produce a better
product for the end-user.

11. Acknowledgements

I would like to thank the entire SketchBook Pro
V2.0 team for their hard work and dedication to the
product. Thanks also to the Research team, our co-op
students and the other members of the Usability
Engineering team for helping out with design,
prototyping and testing. Special thanks go to Larry

Philps for supporting the entire Usability Engineering
group, and to Jim Hewitt for supporting me.

12. References

[1] Norman, D. A., and S. W. Draper, editors, User-Centered
Design, Hillsdale, N.J., 1986.

[2] Garrett, Jesse James, The Elements of User Experience:
User-Centered Design for the Web, New Riders Press, 2002.

[3] http://www.agilemanifesto.org/

[4] Kurtenbach, G., and W. Buxton, "User Learning and
Performance with Marking Menus", Conference Companion
on Human Factors in Computing Systems, April 1999.

[5] Highsmith, James A. III, Adaptive Software
Development: A Collaborative Approach to Managing
Complex Systems, Dorset House Publishing Co., Inc., 1999.

[6] Schwaber, Ken, and Mike Beedle, Agile Software
Development with SCRUM, Prentice Hall, 2001.

[7] Beck, Kent, Extreme Programming Explained: Embrace
Change, Addison-Wesley Professional, 1999.

[8] Samuels, Mark, “Elearning disaster ignored users' needs”,
Computing, vnunet.com, March 10, 2005.
http://www.vnunet.com/comment/1161820

[9] "e-University failure: MP Committee issues damming
report", PublicTechnology.net, March 4, 2005
http://www.publictechnology.net/modules.php?op=modload
&name=News&file=article&sid=2545

[10] http://www.agilemanifesto.org/principles.html

14. Resources

Alreck, Pamela L., and Robert B. Settle, The Survey
Research Handbook, McGraw-Hill, 1994, ISBN:
0786303581

Beyer, Hugh, and Karen Holtzblatt, Contextual Design:
Defining Customer-Centered Systems, Morgan Kaufmann,
1997, ISBN: 1558604111

Dumas, Joseph F., and Janice C. Redish, A Practical Guide
to Usability Testing, Ablex Pub, 1993, ISBN: 0893919918

Hackos, Joanne, and Janice C. Redish, User and Task
Analysis for Interface Design, John Wiley & Sons Canada,
Ltd., 1994, ISBN: 0471178314

Greenbaum, Thomas L., Moderating Focus Groups: A
Practical Guide for Group Facilitation, Sage Publications,
Inc., 2000, ISBN: 0761920447

Kuniavsky, Mike, Observing the User Experience, Morgan
Kaufmann, 2003, ISBN: 1558609237

Wixon, Dennis, and Judith Ramey, editors, Field Methods
Casebook for Software Design, John Wiley & Sons Canada,
Ltd., 1996, ISBN: 0471149675

15. Legal

Alias® and SketchBook™ are trademarks or registered
trademarks of Alias Systems Corp. in the United States
and/or other countries.

Adobe®, Photoshop® and Illustrator® are either
trademarks or registered trademarks of Adobe Systems
Incorporated in the United States and/or other
countries.

Wacom® is a registered trademark of WACOM
Company, Ltd. in the United States and/or other
countries

